Today, we are kicking off the Synthesis AI blog. In these posts, we will speak mostly about our main focus, synthetic data, that is, artificially created data used to train machine learning models. But before we begin to dive into the details of synthetic data generation and use, I want to start with the problem setting. Why do we need synthetic data? What is the problem and are there other ways to solve it? This is exactly what we will discuss in the first series of posts.
Optical 3D range sensors, like RGB-D cameras and LIDAR, have found widespread use in robotics to generate rich and accurate 3D maps of the environment, from self-driving cars to autonomous manipulators. However, despite the ubiquity of these complex robotic systems, transparent objects (like a glass container) can confound even a suite of expensive sensors that are commonly used.