Category: Synthetic Data: The Early Days

Synthetic Data: The Early Days, Part II

We continue from last time, when we began a discussion of the origins and first applications of synthetic data: using simple artificial drawings for specific problems and using synthetically generated datasets to compare different computer vision algorithms. Today, we will learn how people made self-driving cars in the 1980s and see that as soon as computer vision started tackling real world problems with machine learning, it could not avoid synthetic data.

Continue reading
Synthetic Data: The Early Days, Part I

Previously on this blog, we have discussed the data problem: why machine learning may be hitting a wall, how one-shot and zero-shot learning can help, how come reinforcement learning does not need data at all, and how unlabeled datasets can inform even supervised learning tasks. Today, we begin discussing our main topic: synthetic data. Let us start from the very beginning: how synthetic data was done in the early days of computer vision…

Continue reading

Synthesis AI speaking at the MetaBeat conference on Oct 4th

X