Press Releases
September 15, 2021
Yashar Behzadi
Survey of Industry Leaders Shows Synthetic Data is Essential to Building More Capable AI Models

Executives believe that synthetic data is key to more efficiently and cost-effectively creating labeled training data.

SAN FRANCISCO, Sept. 15, 2021 /PRNewswire/ — Synthesis AI, a pioneer in synthetic data technologies, today released a new report in conjunction with Vanson Bourne, a global technology market research firm, highlighting how 89% of technology executives view synthetic data as a key emerging technology to creating more capable models, cutting the cost of data labeling, improving access to data, and reducing the time it takes to build AI models.

Industry leaders believe that, on average, 59% of their industry will utilize synthetic data in five years, either independently or in combination with ‘real-world’ data. This suggests that synthetic data will play an important role in the development of next-generation AI models.

The survey report, Adapt or Be Left Behind: 89 Percent of Tech Execs See Synthetic Data As a Key to Transforming Their Industry, is based on a survey of 100 senior technology executives on their perceptions of synthetic data, potential benefits and barriers of implementation, and what industry leaders think it will take to continue driving the adoption of synthetic data.

Synthetic data refers to computer-generated images and simulations used to train computer vision models. Synthetic data is emerging to be an essential element in building accurate and capable AI models, as it provides developers with vast amounts of perfectly labeled data on-demand.

“AI is driven by the amount, quality, and speed of training data. Synthetic training data is already making waves in several industries including autonomous vehicles and robotics. There is a critical need for more education on the underlying technology and benefits to drive broader industry adoption,” said Yashar Behzadi, CEO and founder of Synthesis AI. “Building core synthetic data capability will be the key to whether or not some companies adapt or fall behind in the future. Synthetic data has the potential to deliver perfectly labeled data on-demand, potentially cutting millions of dollars and months of work related to the current process of collecting, preparing, and manually labeling training data.”

Andy Thurai, Vice President and Principal Analyst at Constellation Research, said, “Today’s AI models are limited by real-world data for a couple of reasons – collecting real-world data is very expensive, and most companies don’t have the time and resources to collect the volume of data that is required to train models that the tech giants do. The survey results indicate synthetic data is a new market where there is a knowledge gap that needs to be addressed. A blend of the real world and synthetic data will provide the best combination that is impossible to match just by raw data collection. If a model can handle all possible scenarios based on assumptions, then it is ready for real-world scenarios.”

Synthetic data adoption is increasing, but a key to further adoption is enhanced understanding of this emerging technology across the board, all the way from the C-suite to machine learning engineers. Only half (51%) of the respondents were knowledgeable, state-of-the-art synthetic data approaches indicating a critical gap.

Respondents who were aware of recent advances in synthetic data expressed confidence in the technology’s ability to address key issues with current “real-world” data approaches. This indicates that if the knowledge gap is reduced, many more will likely see and understand synthetic data’s benefits.

Prominent barriers to synthetic data adoption are organizational knowledge and a slow buy-in from colleagues.

Other barriers to adoption included:

  • Concerns that models built with synthetic data are not as good as ‘real-world’ data (46%);
  • Difficulty in creating high-quality synthetic data for complex systems (45%);
  • The costs of integration and implementation (42%).

Recent advances in synthetic data are addressing the key identified barriers and the technology is predicted to be a significant enabler of the next generation of AI models.

Click here to download the report. To learn more about the company, visit

About Synthesis AI
Synthesis AI, a San Francisco-based technology company, is pioneering the use of synthetic data to build more capable computer vision models. Through a proprietary combination of generative neural networks and cinematic CGI pipelines, Synthesis’ platform can programmatically create vast amounts of perfectly-labeled image data at orders of magnitude increased speed and reduced cost compared to current approaches.

About Yashar Behzadi
Yashar Behzadi is the CEO of Synthesis AI. He is an experienced entrepreneur who has built transformative businesses in AI, medical technology, and IoT markets. He has spent the last 14 years in Silicon Valley building and scaling data-centric technology companies. His work at Proteus Digital Health was recognized by Wired as one of the top 10 technological breakthroughs of 2008 and as a Technology Pioneer by the World Economic Forum. Yashar has over 30 patents and patents pending and a Ph.D. in Bioengineering from UCSD.